A Study of Singularities on Rational Curves Via Syzygies
Author | : David A. Cox |
Publisher | : American Mathematical Soc. |
Total Pages | : 132 |
Release | : 2013-02-26 |
ISBN-10 | : 9780821887431 |
ISBN-13 | : 0821887432 |
Rating | : 4/5 (31 Downloads) |
Book excerpt: Consider a rational projective curve $\mathcal{C}$ of degree $d$ over an algebraically closed field $\pmb k$. There are $n$ homogeneous forms $g_{1},\dots, g_{n}$ of degree $d$ in $B=\pmb k[x, y]$ which parameterize $\mathcal{C}$ in a birational, base point free, manner. The authors study the singularities of $\mathcal{C}$ by studying a Hilbert-Burch matrix $\varphi$ for the row vector $[g_{1},\dots, g_{n}]$. In the ``General Lemma'' the authors use the generalized row ideals of $\varphi$ to identify the singular points on $\mathcal{C}$, their multiplicities, the number of branches at each singular point, and the multiplicity of each branch. Let $p$ be a singular point on the parameterized planar curve $\mathcal{C}$ which corresponds to a generalized zero of $\varphi$. In the `'triple Lemma'' the authors give a matrix $\varphi'$ whose maximal minors parameterize the closure, in $\mathbb{P}^{2}$, of the blow-up at $p$ of $\mathcal{C}$ in a neighborhood of $p$. The authors apply the General Lemma to $\varphi'$ in order to learn about the singularities of $\mathcal{C}$ in the first neighborhood of $p$. If $\mathcal{C}$ has even degree $d=2c$ and the multiplicity of $\mathcal{C}$ at $p$ is equal to $c$, then he applies the Triple Lemma again to learn about the singularities of $\mathcal{C}$ in the second neighborhood of $p$. Consider rational plane curves $\mathcal{C}$ of even degree $d=2c$. The authors classify curves according to the configuration of multiplicity $c$ singularities on or infinitely near $\mathcal{C}$. There are $7$ possible configurations of such singularities. They classify the Hilbert-Burch matrix which corresponds to each configuration. The study of multiplicity $c$ singularities on, or infinitely near, a fixed rational plane curve $\mathcal{C}$ of degree $2c$ is equivalent to the study of the scheme of generalized zeros of the fixed balanced Hilbert-Burch matrix $\varphi$ for a parameterization of $\mathcal{C}$.