Acidification and Hypoxia in Marginal Seas
Author | : Xianghui Guo |
Publisher | : Frontiers Media SA |
Total Pages | : 544 |
Release | : 2022-05-27 |
ISBN-10 | : 9782889762538 |
ISBN-13 | : 288976253X |
Rating | : 4/5 (38 Downloads) |
Book excerpt: The image is modified based on Figure 1a of Lucey et al. (this Research Topic) and Figure 7b of Niemi et al. (this Research Topic). (A) Graphical depiction of atmospheric warming and increasing atmospheric carbon dioxide (CO2atm), which drives ocean warming, contribute to the decreases in dissolved oxygen (DO), and lowers pH and saturation state index of calcium carbonate (Ω). The partial pressure of CO2 (pCO2) increases due to increasing atmospheric CO2 that is absorbed into the seawater (i.e., ocean acidification), along with other biological processes in the marine environment. (B) Scanning Electron Microscope (SEM) image showing dissolution on pteropod shells collected in the Amundsen Gulf in the Canadian Arctic, in 2017. Lucey N, Haskett E and Collin R (2020) Multi-stressor Extremes Found on a Tropical Coral Reef Impair Performance. Front. Mar. Sci. 7:588764. doi: 10.3389/fmars.2020.588764 Niemi A, Bednaršek N, Michel C, Feely RA, Williams W, Azetsu-Scott K, Walkusz W and Reist JD (2021) Biological Impact of Ocean Acidification in the Canadian Arctic: Widespread Severe Pteropod Shell Dissolution in Amundsen Gulf. Front. Mar. Sci. 8:600184. doi: 10.3389/fmars.2021.600184