Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Download or Read eBook Handbook of Robust Low-Rank and Sparse Matrix Decomposition PDF written by Thierry Bouwmans and published by CRC Press. This book was released on 2016-05-27 with total page 553 pages. Available in PDF, EPUB and Kindle.
Handbook of Robust Low-Rank and Sparse Matrix Decomposition
Author :
Publisher : CRC Press
Total Pages : 553
Release :
ISBN-10 : 9781498724630
ISBN-13 : 1498724639
Rating : 4/5 (30 Downloads)

Book Synopsis Handbook of Robust Low-Rank and Sparse Matrix Decomposition by : Thierry Bouwmans

Book excerpt: Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.


Handbook of Robust Low-Rank and Sparse Matrix Decomposition Related Books

Handbook of Robust Low-Rank and Sparse Matrix Decomposition
Language: en
Pages: 553
Authors: Thierry Bouwmans
Categories: Computers
Type: BOOK - Published: 2016-05-27 - Publisher: CRC Press

DOWNLOAD EBOOK

Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by d
Proceedings of 2017 Chinese Intelligent Systems Conference
Language: en
Pages: 762
Authors: Yingmin Jia
Categories: Technology & Engineering
Type: BOOK - Published: 2017-09-27 - Publisher: Springer

DOWNLOAD EBOOK

This book presents selected research papers from CISC’17, held in MudanJiang, China. The topics covered include Multi-agent system, Evolutionary Computation,
Proceedings of 2018 Chinese Intelligent Systems Conference
Language: en
Pages: 844
Authors: Yingmin Jia
Categories: Technology & Engineering
Type: BOOK - Published: 2018-10-03 - Publisher: Springer

DOWNLOAD EBOOK

These proceedings present selected research papers from CISC’18, held in Wenzhou, China. The topics include Multi-Agent Systems, Networked Control Systems, In
Low-Rank Models in Visual Analysis
Language: en
Pages: 262
Authors: Zhouchen Lin
Categories: Computers
Type: BOOK - Published: 2017-06-06 - Publisher: Academic Press

DOWNLOAD EBOOK

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual anal
Intelligence Science and Big Data Engineering
Language: en
Pages: 691
Authors: Yi Sun
Categories: Computers
Type: BOOK - Published: 2017-09-14 - Publisher: Springer

DOWNLOAD EBOOK

This book constitutes the proceedings of the 7th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2017, held in Dalian, China,