Markov Processes from K. Itô's Perspective (AM-155)

Download or Read eBook Markov Processes from K. Itô's Perspective (AM-155) PDF written by Daniel W. Stroock and published by Princeton University Press. This book was released on 2003-05-06 with total page 289 pages. Available in PDF, EPUB and Kindle.
Markov Processes from K. Itô's Perspective (AM-155)
Author :
Publisher : Princeton University Press
Total Pages : 289
Release :
ISBN-10 : 9781400835577
ISBN-13 : 1400835577
Rating : 4/5 (77 Downloads)

Book Synopsis Markov Processes from K. Itô's Perspective (AM-155) by : Daniel W. Stroock

Book excerpt: Kiyosi Itô's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Itô's program. The modern theory of Markov processes was initiated by A. N. Kolmogorov. However, Kolmogorov's approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed increments. To remedy this defect, Itô interpreted Kolmogorov's famous forward equation as an equation that describes the integral curve of a vector field on the space of probability measures. Thus, in order to show how Itô's thinking leads to his theory of stochastic integral equations, Stroock begins with an account of integral curves on the space of probability measures and then arrives at stochastic integral equations when he moves to a pathspace setting. In the first half of the book, everything is done in the context of general independent increment processes and without explicit use of Itô's stochastic integral calculus. In the second half, the author provides a systematic development of Itô's theory of stochastic integration: first for Brownian motion and then for continuous martingales. The final chapter presents Stratonovich's variation on Itô's theme and ends with an application to the characterization of the paths on which a diffusion is supported. The book should be accessible to readers who have mastered the essentials of modern probability theory and should provide such readers with a reasonably thorough introduction to continuous-time, stochastic processes.


Markov Processes from K. Itô's Perspective (AM-155) Related Books

Markov Processes from K. Itô's Perspective (AM-155)
Language: en
Pages: 289
Authors: Daniel W. Stroock
Categories: Mathematics
Type: BOOK - Published: 2003-05-06 - Publisher: Princeton University Press

DOWNLOAD EBOOK

Kiyosi Itô's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory o
Stochastic Processes and Applications
Language: en
Pages: 345
Authors: Grigorios A. Pavliotis
Categories: Mathematics
Type: BOOK - Published: 2014-11-19 - Publisher: Springer

DOWNLOAD EBOOK

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sci
Essentials of Stochastic Processes
Language: en
Pages: 282
Authors: Richard Durrett
Categories: Mathematics
Type: BOOK - Published: 2016-11-07 - Publisher: Springer

DOWNLOAD EBOOK

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students f
Markov Chains and Stochastic Stability
Language: en
Pages: 623
Authors: Sean Meyn
Categories: Mathematics
Type: BOOK - Published: 2009-04-02 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad
Markov Processes from K. Itô's Perspective
Language: en
Pages: 292
Authors: Daniel W. Stroock
Categories: Mathematics
Type: BOOK - Published: 2003-05-26 - Publisher: Princeton University Press

DOWNLOAD EBOOK

Kiyosi Itô's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory o