Mathematics for Machine Learning

Download or Read eBook Mathematics for Machine Learning PDF written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle.
Mathematics for Machine Learning
Author :
Publisher : Cambridge University Press
Total Pages : 392
Release :
ISBN-10 : 9781108569323
ISBN-13 : 1108569323
Rating : 4/5 (23 Downloads)

Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Mathematics for Machine Learning Related Books

Mathematics for Machine Learning
Language: en
Pages: 392
Authors: Marc Peter Deisenroth
Categories: Computers
Type: BOOK - Published: 2020-04-23 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, opti
Hands-On Mathematics for Deep Learning
Language: en
Pages: 347
Authors: Jay Dawani
Categories: Computers
Type: BOOK - Published: 2020-06-12 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear alge
Mathematics and Programming for Machine Learning with R
Language: en
Pages: 431
Authors: William Claster
Categories: Computers
Type: BOOK - Published: 2020-10-26 - Publisher: CRC Press

DOWNLOAD EBOOK

Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up
Data Science and Machine Learning
Language: en
Pages: 538
Authors: Dirk P. Kroese
Categories: Business & Economics
Type: BOOK - Published: 2019-11-20 - Publisher: CRC Press

DOWNLOAD EBOOK

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked
Probability Inequalities
Language: en
Pages: 192
Authors: Zhengyan Lin
Categories: Mathematics
Type: BOOK - Published: 2011-05-30 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Inequality has become an essential tool in many areas of mathematical research, for example in probability and statistics where it is frequently used in the pro