Metric Learning

Download or Read eBook Metric Learning PDF written by Aurélien Muise and published by Springer Nature. This book was released on 2022-05-31 with total page 139 pages. Available in PDF, EPUB and Kindle.
Metric Learning
Author :
Publisher : Springer Nature
Total Pages : 139
Release :
ISBN-10 : 9783031015724
ISBN-13 : 303101572X
Rating : 4/5 (24 Downloads)

Book Synopsis Metric Learning by : Aurélien Muise

Book excerpt: Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and review methods for more complex settings such as multi-task and semi-supervised learning. Although most of the existing work has focused on numerical data, we cover the literature on metric learning for structured data like strings, trees, graphs and time series. In the more technical part of the book, we present some recent statistical frameworks for analyzing the generalization performance in metric learning and derive results for some of the algorithms presented earlier. Finally, we illustrate the relevance of metric learning in real-world problems through a series of successful applications to computer vision, bioinformatics and information retrieval. Table of Contents: Introduction / Metrics / Properties of Metric Learning Algorithms / Linear Metric Learning / Nonlinear and Local Metric Learning / Metric Learning for Special Settings / Metric Learning for Structured Data / Generalization Guarantees for Metric Learning / Applications / Conclusion / Bibliography / Authors' Biographies


Metric Learning Related Books

Metric Learning
Language: en
Pages: 139
Authors: Aurélien Muise
Categories: Computers
Type: BOOK - Published: 2022-05-31 - Publisher: Springer Nature

DOWNLOAD EBOOK

Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropria
Metric Learning
Language: en
Pages: 92
Authors: Brian Kulis
Categories: Computers
Type: BOOK - Published: 2013 - Publisher: Now Pub

DOWNLOAD EBOOK

Metric Learning: A Review presents an overview of existing research in metric learning, including recent progress on scaling to high-dimensional feature spaces
Computer Vision – ECCV 2012
Language: en
Pages: 909
Authors: Andrew Fitzgibbon
Categories: Computers
Type: BOOK - Published: 2012-09-26 - Publisher: Springer

DOWNLOAD EBOOK

The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held
Metric in Minutes
Language: en
Pages: 120
Authors: Dennis R. Brownridge
Categories: Science
Type: BOOK - Published: 1994 - Publisher: Professional Publications Incorporated

DOWNLOAD EBOOK

Covers everything you need to know about the metric system (système internationale, SI), from its history to practical tips on conversions and problem solving.
Introduction to Transfer Learning
Language: en
Pages: 333
Authors: Jindong Wang
Categories: Computers
Type: BOOK - Published: 2023-03-30 - Publisher: Springer Nature

DOWNLOAD EBOOK

Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by