The Branched Cyclic Coverings of 2 Bridge Knots and Links
Author | : Jerome Minkus |
Publisher | : American Mathematical Soc. |
Total Pages | : 75 |
Release | : 1982 |
ISBN-10 | : 9780821822555 |
ISBN-13 | : 0821822551 |
Rating | : 4/5 (55 Downloads) |
Book excerpt: In this paper a family of closed oriented 3 dimensional manifolds {[italic]M[subscript italic]n([italic]k,[italic]h)} is constructed by pasting together pairs of regions on the boundary of a 3 ball. The manifold [italic]M[subscript italic]n([italic]k,[italic]h) is a generalization of the lens space [italic]L([italic]n,1) and is closely related to the 2 bridge knot or link of type ([italic]k,[italic]h). While the work is basically geometrical, examination of [lowercase Greek]Pi1([italic]M[subscript italic]n([italic]k,[italic]h)) leads naturally to the study of "cyclic" presentations of groups. Abelianizing these presentations gives rise to a formula for the Alexander polynomials of 2 bridge knots and to a description of [italic]H1([italic]M[subscript italic]n([italic]k,[italic]h), [italic]Z) by means of circulant matrices whose entries are the coefficients of these polynomials.