Uncertainty Modelling in Data Science

Download or Read eBook Uncertainty Modelling in Data Science PDF written by Sébastien Destercke and published by Springer. This book was released on 2018-07-24 with total page 246 pages. Available in PDF, EPUB and Kindle.
Uncertainty Modelling in Data Science
Author :
Publisher : Springer
Total Pages : 246
Release :
ISBN-10 : 9783319975474
ISBN-13 : 3319975471
Rating : 4/5 (74 Downloads)

Book Synopsis Uncertainty Modelling in Data Science by : Sébastien Destercke

Book excerpt: This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was held in conjunction with the 5th International Conference on Belief Functions (BELIEF 2018) in Compiègne, France on September 17–21, 2018. It includes foundational, methodological and applied contributions on topics as varied as imprecise data handling, linguistic summaries, model coherence, imprecise Markov chains, and robust optimisation. These proceedings were produced using EasyChair. Over recent decades, interest in extensions and alternatives to probability and statistics has increased significantly in diverse areas, including decision-making, data mining and machine learning, and optimisation. This interest stems from the need to enrich existing models, in order to include different facets of uncertainty, like ignorance, vagueness, randomness, conflict or imprecision. Frameworks such as rough sets, fuzzy sets, fuzzy random variables, random sets, belief functions, possibility theory, imprecise probabilities, lower previsions, and desirable gambles all share this goal, but have emerged from different needs. The advances, results and tools presented in this book are important in the ubiquitous and fast-growing fields of data science, machine learning and artificial intelligence. Indeed, an important aspect of some of the learned predictive models is the trust placed in them. Modelling the uncertainty associated with the data and the models carefully and with principled methods is one of the means of increasing this trust, as the model will then be able to distinguish between reliable and less reliable predictions. In addition, extensions such as fuzzy sets can be explicitly designed to provide interpretable predictive models, facilitating user interaction and increasing trust.


Uncertainty Modelling in Data Science Related Books

Uncertainty Modelling in Data Science
Language: en
Pages: 246
Authors: Sébastien Destercke
Categories: Technology & Engineering
Type: BOOK - Published: 2018-07-24 - Publisher: Springer

DOWNLOAD EBOOK

This book features 29 peer-reviewed papers presented at the 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018), which was he
Uncertainty
Language: en
Pages: 274
Authors: William Briggs
Categories: Mathematics
Type: BOOK - Published: 2016-07-15 - Publisher: Springer

DOWNLOAD EBOOK

This book presents a philosophical approach to probability and probabilistic thinking, considering the underpinnings of probabilistic reasoning and modeling, wh
An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems
Language: en
Pages: 275
Authors: Luis Tenorio
Categories: Mathematics
Type: BOOK - Published: 2017-07-06 - Publisher: SIAM

DOWNLOAD EBOOK

Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is t
Data Science
Language: en
Pages: 489
Authors: Ivo D. Dinov
Categories: Computers
Type: BOOK - Published: 2021-12-06 - Publisher: Walter de Gruyter GmbH & Co KG

DOWNLOAD EBOOK

The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this
Modeling Uncertainty in the Earth Sciences
Language: en
Pages: 294
Authors: Jef Caers
Categories: Science
Type: BOOK - Published: 2011-05-25 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

Modeling Uncertainty in the Earth Sciences highlights the various issues, techniques and practical modeling tools available for modeling the uncertainty of comp