Data Analysis Using Hierarchical Generalized Linear Models with R

Download or Read eBook Data Analysis Using Hierarchical Generalized Linear Models with R PDF written by Youngjo Lee and published by CRC Press. This book was released on 2017-07-06 with total page 242 pages. Available in PDF, EPUB and Kindle.
Data Analysis Using Hierarchical Generalized Linear Models with R
Author :
Publisher : CRC Press
Total Pages : 242
Release :
ISBN-10 : 9781351811552
ISBN-13 : 135181155X
Rating : 4/5 (52 Downloads)

Book Synopsis Data Analysis Using Hierarchical Generalized Linear Models with R by : Youngjo Lee

Book excerpt: Since their introduction, hierarchical generalized linear models (HGLMs) have proven useful in various fields by allowing random effects in regression models. Interest in the topic has grown, and various practical analytical tools have been developed. This book summarizes developments within the field and, using data examples, illustrates how to analyse various kinds of data using R. It provides a likelihood approach to advanced statistical modelling including generalized linear models with random effects, survival analysis and frailty models, multivariate HGLMs, factor and structural equation models, robust modelling of random effects, models including penalty and variable selection and hypothesis testing. This example-driven book is aimed primarily at researchers and graduate students, who wish to perform data modelling beyond the frequentist framework, and especially for those searching for a bridge between Bayesian and frequentist statistics.


Data Analysis Using Hierarchical Generalized Linear Models with R Related Books